Association of a genetic variant in AKT1 gene with features of the metabolic syndrome

Genes Dis. 2019 Jun 17;6(3):290-295. doi: 10.1016/j.gendis.2019.03.002. eCollection 2019 Sep.

Abstract

Metabolic syndrome (MetS) is a clustering of metabolic abnormalities that is associated with increased risk of developing cardiovascular disease and type 2 diabetes. There is growing body of data showing the associations of genetic variants of the genes involved in the PI3K/AKT/mTOR pathway with diabetes and obesity. We aimed to investigate the association between MetS and its components with the genetic polymorphism in AKT1, rs1130233 (T > C). Total of 618 participants, recruited from Mashhad stroke and heart atherosclerosis disorder cohort (MASHAD study). Patients with MetS were defined by using international diabetes federation (IDF) criteria (n = 326) and those without MetS (n = 261) were recruited. Anthropometric and biochemical parameters were measured in all subjects. Genetic analysis for the rs1130233 polymorphism was performed, using the ABI-StepOne instruments with SDS version-2.0 software. Individuals with MetS had a significantly higher levels of BMI, waist-circumference, total cholesterol, triglyceride, high sensitivity-c reactive protein (hs-CRP) and blood-pressure, and lower concentrations of high density lipoprotein (HDL-C), compared to non-MetS individuals (P < 0.05). The association between the rs1130233 and MetS was not significant. Subjects with a CC or CT genotypes had a significantly higher serum hs-CRP-level (OR: 1.5; 95% CI (1.05-2.1), P = 0.02). Additionally, subjects who carried the TC genotype had a higher BMI compared to the CC genotype (p value = 0.045). Our findings demonstrated that AKT1, rs1130233 (T > C) polymorphism was associated with major components of MetS such as hs-CRP, and BMI, indicating further investigation in a multi-center setting to explore its value as an emerging biomarker of risk stratification marker.

Keywords: AKT1; CRP; Genetic variant; MetS; PI3K/AKT/mTOR pathway; rs1130233.